

aiosfstream

[image: PyPI package]
 [https://badge.fury.io/py/aiosfstream][image: Documentation Status]
 [http://aiosfstream.readthedocs.io/en/latest/?badge=latest][image: Build status]
 [https://travis-ci.org/robertmrk/aiosfstream][image: Coverage]
 [https://coveralls.io/github/robertmrk/aiosfstream][image: MIT license]
 [https://opensource.org/licenses/MIT]aiosfstream is a Salesforce Streaming API [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/intro_stream.htm] client for asyncio [https://docs.python.org/3/library/asyncio.html]. It can
be used to receive push notifications about changes on Salesforce objects or
notifications of general events sent through the Streaming API [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/intro_stream.htm].

For detailed guidance on how to work with PushTopics [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/working_with_pushtopics.htm] or how
to create Generic Streaming Channels [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/generic_streaming_intro.htm#generic_streaming_intro] please consult the
Streaming API documentation [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/intro_stream.htm].

Features

	
	Supported authentication types:

	
	using a username and password

	using a refresh token

	
	Subscribe to and receive messages on:

	
	PushTopics [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/working_with_pushtopics.htm]

	Generic Streaming Channels [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/generic_streaming_intro.htm#generic_streaming_intro]

	Support for durable messages and replay of events [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/using_streaming_api_durability.htm]

	Automatic recovery from replay errors

Usage

import asyncio

from aiosfstream import SalesforceStreamingClient

async def stream_events():
 # connect to Streaming API
 async with SalesforceStreamingClient(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>") as client:

 # subscribe to topics
 await client.subscribe("/topic/one")
 await client.subscribe("/topic/two")

 # listen for incoming messages
 async for message in client:
 topic = message["channel"]
 data = message["data"]
 print(f"{topic}: {data}")

if __name__ == "__main__":
 loop = asyncio.get_event_loop()
 loop.run_until_complete(stream_events())

Contents

	User’s guide
	Installation
	Install extras

	Quickstart
	Authentication

	Connecting

	Channels

	Subscriptions

	Receiving messages

	Replay of events

	Advanced Usage
	Replay configuration

	Network failures

	Prefetching

	JSON encoder/decoder

	API Reference
	Client

	Authenticators

	Replay

	Exceptions

	Changelog
	0.2.3 (2018-09-19)

	0.2.2 (2018-06-15)

	0.2.1 (2018-05-25)

	0.2.0 (2018-05-05)

	0.1.0 (2018-04-26)

Indices and tables

	Index

	Module Index

	Search Page

User’s guide

	Installation
	Install extras

	Quickstart
	Authentication

	Connecting

	Channels

	Subscriptions

	Receiving messages

	Replay of events

	Advanced Usage
	Replay configuration

	Network failures

	Prefetching

	JSON encoder/decoder

Installation

pip install aiosfstream

Install extras

aiosfstream defines several groups of optional requirements:

	tests for running unit tests

	docs for building the documentation

	dev for creating a complete development enviroment

Any combination of these options can be specified during installation.

pip install aiosfstream[tests,docs,dev]

Quickstart

Authentication

To connect to the Salesforce Streaming API [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/intro_stream.htm] all clients must
authenticate themselves. The library supports the
username-password [https://help.salesforce.com/articleView?id=remoteaccess_oauth_username_password_flow.htm&type=5] based OAuth2 authentication flow as well
as the refresh token [https://help.salesforce.com/articleView?id=remoteaccess_oauth_refresh_token_flow.htm&type=5] based authentication.

Whichever technique you end up using, you must first create a
Connected App [https://help.salesforce.com/articleView?id=connected_app_overview.htm&type=5] on Salesforce to acquire a Consumer Key and
Consumer Secret value. Which are actually the client_id and client_secret
parameters in OAuth2 terminology.

Username-Password authentication

For username-password based authentication you can use the
SalesforceStreamingClient class, with the Salesforce user’s
username and password:

client = SalesforceStreamingClient(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>"
)

SalesforceStreamingClient is actually just a convenience class,
based on Client. It enables you to create a client object
with the most common authentication technique, without having to create a
separate PasswordAuthenticator object. You can actually use the
Client class to create client that would be equivalent with the
example above:

auth = PasswordAuthenticator(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>"
)
client = Client(auth)

Refresh token authentication

The refresh token base authentication technique can be used by creating
a RefreshTokenAuthenticator and passing it to the Client
class:

auth = RefreshTokenAuthenticator(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 refresh_token="<refresh_token>"
)
client = Client(auth)

You can get a refresh token using several different authentication techniques
supported by Salesforce [https://help.salesforce.com/articleView?id=remoteaccess_authenticate_overview.htm], the most commonly used one is probably
the web server authentication flow [https://help.salesforce.com/articleView?id=remoteaccess_oauth_web_server_flow.htm&type=5].

Connecting

After creating a Client object the open() method
should be called to establish a connection with the server. The connection is
closed and the session is terminated by calling the close()
method.

client = SalesforceStreamingClient(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>"
)
await client.open()
subscribe and receive messsages...
await client.close()

Client objects can be also used as asynchronous context managers.

async with SalesforceStreamingClient(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>") as client:
 # subscribe and receive messsages...

Channels

A channel is a string that looks like a URL path such as /topic/foo or
/topic/bar.

For detailed guidance on how to work with PushTopics [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/working_with_pushtopics.htm] or how
to create Generic Streaming Channels [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/generic_streaming_intro.htm#generic_streaming_intro] please consult the
Streaming API documentation [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/intro_stream.htm].

Subscriptions

To receive notification messages the client must subscribe to the channels
it’s interested in.

await client.subscribe("/topic/foo")

If you no longer want to receive messages from one of the channels you’re
subscribed to then you must unsubscribe from the channel.

await client.unsubscribe("/topic/foo")

The current set of subscriptions can be obtained from the
Client.subscriptions attribute.

Receiving messages

To receive messages broadcasted by Salesforce after
subscribing to these channels the
receive() method should be used.

message = await client.receive()

The receive() method will wait until a message is received
or it will raise a TransportTimeoutError in case the
connection is lost with the server and the client can’t re-establish the
connection or a ServerError if the connection gets
closed by the server.

The client can also be used as an asynchronous iterator in a for loop to wait
for incoming messages.

async for message in client:
 # process message

Replay of events

The great thing about streaming is that the client gets instantly notified
about events as they occur. The downside is that if the client becomes
temporarily disconnected, due to hardware, software or network failure, then
it might miss some of the messages emitted by the server. This is where
Salesforce’s message durability comes in handy.

Salesforce stores events for 24 hours. Events outside the 24-hour retention
period are discarded. Salesforce extends the event messages with repalyId
and createdDate fields (called as ReplayMarker by aiosfstream).
These fields can be used by the client to request the missed event messages
from the server when it reconnects.

The default behavior of the client is to receive only the new events sent after
subscribing. To take advantage of message durability, all you have to do is to
pass an object capable of storing the most recent ReplayMarker
objects, so the next time the client reconnects, it can continue to process
event messages from the point where it left off. The most convenient
choice is a Shelf [https://docs.python.org/3/library/shelve.html#shelve.Shelf] object, which can store
ReplayMarkers on the disk, between application
restarts.

with shelve.open("replay.db") as replay:

 async with SalesforceStreamingClient(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>",
 replay=replay) as client:

 await client.subscribe("/topic/foo")

 async for message in client:
 # process message

Besides Shelf [https://docs.python.org/3/library/shelve.html#shelve.Shelf] objects you can pass a lot of different kind
of objects to the replay parameter, and you can configure different aspects of
replay behavior as well. For a full description of replay configuration
options check out the Replay configuration section.

Advanced Usage

Replay configuration

Salesforce stores events for 24 hours. Events outside the 24-hour retention
period are discarded.

ReplayOption

A subscriber can choose which events to receive, such as all events within
the retention window or starting after a particular event. In the
Client object this can be specified with the replay parameter.
The default is to receive only the new events sent after subscribing, the
default replay parameter is ReplayOption.NEW_EVENTS

This high-level diagram shows how event consumers can read a stream of events
by using various replay options.

[image: _images/replay.png]
If you want to receive all events within the retention window every time the
Client connects, before receiving new events, then the
ReplayOption.ALL_EVENTS value should be passed to the
Client.

async with SalesforceStreamingClient(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>",
 replay=ReplayOption.ALL_EVENTS) as client:

 await client.subscribe("/topic/foo")

 async for message in client:
 # process message

ReplayMarkerStorage

Although using a fixed ReplayOption can be sometimes useful, the
real advantage of using Salesforce’s replay [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/using_streaming_api_durability.htm] extension comes from being able
to continue to process event messages from the point where the client left off.
To take advantage of this feature, all you have to do is to
pass an object capable of storing the most recent ReplayMarker for
every channel.

Salesforce extends the event messages with repalyId and createdDate
fields (called as ReplayMarker by aiosfstream).

The simplest way is to pass an object for the replay parameter that
inherits from collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]. This can be a simple
dict [https://docs.python.org/3/library/stdtypes.html#dict], OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] or if you want to use
persistent storage then a Shelf [https://docs.python.org/3/library/shelve.html#shelve.Shelf] object, or maybe one of the
key-value database drivers that inherit from
collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping].

with shelve.open("replay.db") as replay:

 async with SalesforceStreamingClient(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>",
 replay=replay) as client:

 await client.subscribe("/topic/foo")

 async for message in client:
 # process message

By using a collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping] object, the client on the
first connection will receive only new events, and on reconnection will
continue from the last unretrieved message. If you want to receive all events
from the retention window before continuing with new events, combined with the
advantage of continuation on the next reconnect, then you can pass a
DefaultMappingStorage object to the replay parameter.

with shelve.open("replay.db") as replay:

 default_mapping = DefaultMappingStorage(
 replay,
 ReplayOption.ALL_EVENTS
)

 async with SalesforceStreamingClient(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>",
 replay=default_mapping) as client:

 await client.subscribe("/topic/foo")

 async for message in client:
 # process message

If you want complete control over how ReplayMarkers
are stored and retrieved or you want to use your favorite database whose
driver doesn’t inherit from collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping] then
you can provide your own ReplayMarkerStorage implementation.

class MyReplayMarkerStorage(ReplayMarkerStorage):
 async def set_replay_marker(self, subscription, replay_marker):
 # store *replay_marker* for the given *subscription*

 async def get_replay_marker(self, subscription):
 # retrieve the replay marker for the given *subscription*

replay = MyReplayMarkerStorage()

async with SalesforceStreamingClient(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>",
 replay=replay) as client:

 await client.subscribe("/topic/foo")

 async for message in client:
 # process message

Subscription errors

Events outside the 24-hour retention period are discarded. If you’re using some
form of ReplayMarkerStorage or a
MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping] object, and if you’re client doesn’t
connects to the Streaming API for more then 24 hours, then it’s possible that
the client will try to continue retrieving messages from a very old message
outside the retention window. Since Salesforce no longer has the event message
that the client would try to retrieve, it would raise
ServerError.

try:
 await client.subscribe("/topic/foo")
except ServerError as error:
 print(error.error_message)

The above code would print the following message, if the client would request
and event outside the retention window:

The replayId {1} you provided was invalid. Please provide a valid ID, -2
to replay all events, or -1 to replay only new events.

To recover from an error like the above, you would have to discard the
ReplayMarker for the problematic channel, and try to subscribe again.

try:
 await client.subscribe("/topic/foo")
except ServerError as error:
 del replay["/topic/foo"]
 await client.subscribe(/topic/foo")

To spare you the hassle of recovering from errors like the one above, you can
pass a ReplayOption for the replay_fallback parameter. If a
subscription error occurs, then Client will try to resubscribe using
the specified ReplayOption.

with shelve.open("replay.db") as replay:

 async with SalesforceStreamingClient(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>",
 replay=replay,
 replay_fallback=ReplayOption.ALL_EVENTS) as client:

 await client.subscribe("/topic/foo")

 async for message in client:
 # process message

Network failures

When a Client object is opened, it will try to maintain a continuous
connection in the background with the server. If any network failures happen
while waiting to receive() messages, the client will reconnect
to the server transparently, it will resubscribe to the subscribed channels,
and continue to wait for incoming messages.

To avoid waiting for a server which went offline permanently, or in case of a
permanent network failure, a connection_timeout can be passed to the
Client, to limit how many seconds the client object should wait
before raising a TransportTimeoutError if it can’t
reconnect to the server.

client = SalesforceStreamingClient(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>",
 connection_timeout=60
)
await client.open()

try:
 message = await client.receive()
except TransportTimeoutError:
 print("Connection is lost with the server. "
 "Couldn't reconnect in 60 seconds.")

The defaul value is 10 seconds. If you pass None as the
connection_timeout value, then the client will keep on trying indefinitely.

Prefetching

When a Client is opened it will start and maintain a connection in
the background with the server. It will start to fetch messages from the
server as soon as it’s connected, even before receive() is
called.

Prefetching messages has the advantage, that incoming messages will
wait in a buffer for users to consume them when receive()
is called, without any delay.

To avoid consuming all the available memory by the incoming messages, which are
not consumed yet, the number of prefetched messages can be limited with the
max_pending_count parameter of the Client. The default value is
100.

client = SalesforceStreamingClient(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>",
 max_pending_count=42
)

The current number of messages waiting to be consumed can be obtained from the
Client.pending_count attribute.

JSON encoder/decoder

Besides the standard json [https://docs.python.org/3/library/json.html#module-json] module, many third party libraries offer
JSON serialization/deserilization functionality. To use a different library for
handling JSON data types, you can specify the callable to use for serialization
with the json_dumps and the callable for deserialization with the
json_loads parameters of the Client.

import ujson

client = SalesforceStreamingClient(
 consumer_key="<consumer key>",
 consumer_secret="<consumer secret>",
 username="<username>",
 password="<password>",
 json_dumps=ujson.dumps,
 json_loads=ujson.loads
)

API Reference

Client

	
class aiosfstream.SalesforceStreamingClient(*, consumer_key, consumer_secret, username, password, replay=<ReplayOption.NEW_EVENTS: -1>, replay_fallback=None, connection_timeout=10.0, max_pending_count=100, json_dumps=<function dumps>, json_loads=<function loads>, loop=None)

	Salesforce Streaming API client with username/password authentication

This is a convenience class which is suitable for the most common use case.
To use a different authentication method, use the general Client
class with a different
Authenticator

	Parameters

	
	consumer_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Consumer key from the Salesforce connected app definition

	consumer_secret (str [https://docs.python.org/3/library/stdtypes.html#str]) – Consumer secret from the Salesforce connected app definition

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – Salesforce username

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – Salesforce password

	replay (ReplayOption, ReplayMarkerStorage, collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping] or None [https://docs.python.org/3/library/constants.html#None]) – A ReplayOption or an object capable of storing replay ids if you want to take advantage of Salesforce’s replay extension. You can use one of the ReplayOptions, or an object that supports the MutableMapping protocol like dict [https://docs.python.org/3/library/stdtypes.html#dict], defaultdict [https://docs.python.org/3/library/collections.html#collections.defaultdict], Shelf [https://docs.python.org/3/library/shelve.html#shelve.Shelf] etc. or a custom ReplayMarkerStorage implementation.

	replay_fallback (ReplayOption) – Replay fallback policy, for when a subscribe operation fails because a replay id was specified for a message outside the retention window

	connection_timeout (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – The maximum amount of time to wait for the transport to re-establish a connection with the server when the connection fails.

	max_pending_count (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of messages to prefetch from the server. If the number of prefetched messages reach this size then the connection will be suspended, until messages are consumed. If it is less than or equal to zero, the count is infinite.

	json_dumps (callable() [https://docs.python.org/3/library/functions.html#callable]) – Function for JSON serialization, the default is json.dumps() [https://docs.python.org/3/library/json.html#json.dumps]

	json_loads (callable() [https://docs.python.org/3/library/functions.html#callable]) – Function for JSON deserialization, the default is json.loads() [https://docs.python.org/3/library/json.html#json.loads]

	loop – Event loop used to
schedule tasks. If loop is None then
asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] is used to get the default
event loop.

	
class aiosfstream.Client(authenticator, *, replay=<ReplayOption.NEW_EVENTS: -1>, replay_fallback=None, connection_timeout=10.0, max_pending_count=100, json_dumps=<function dumps>, json_loads=<function loads>, loop=None)

	Salesforce Streaming API client

	Parameters

	
	authenticator (AuthenticatorBase) – An authenticator object

	replay (ReplayOption, ReplayMarkerStorage, collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping] or None [https://docs.python.org/3/library/constants.html#None]) – A ReplayOption or an object capable of storing replay ids if you want to take advantage of Salesforce’s replay extension. You can use one of the ReplayOptions, or an object that supports the MutableMapping protocol like dict [https://docs.python.org/3/library/stdtypes.html#dict], defaultdict [https://docs.python.org/3/library/collections.html#collections.defaultdict], Shelf [https://docs.python.org/3/library/shelve.html#shelve.Shelf] etc. or a custom ReplayMarkerStorage implementation.

	replay_fallback (ReplayOption) – Replay fallback policy, for when a subscribe operation fails because a replay id was specified for a message outside the retention window

	connection_timeout (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – The maximum amount of time to wait for the transport to re-establish a connection with the server when the connection fails.

	max_pending_count (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of messages to prefetch from the server. If the number of prefetched messages reach this size then the connection will be suspended, until messages are consumed. If it is less than or equal to zero, the count is infinite.

	json_dumps (callable() [https://docs.python.org/3/library/functions.html#callable]) – Function for JSON serialization, the default is json.dumps() [https://docs.python.org/3/library/json.html#json.dumps]

	json_loads (callable() [https://docs.python.org/3/library/functions.html#callable]) – Function for JSON deserialization, the default is json.loads() [https://docs.python.org/3/library/json.html#json.loads]

	loop – Event loop used to
schedule tasks. If loop is None then
asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] is used to get the default
event loop.

	
coroutine open()

	Establish a connection with the Streaming API endpoint

	Raises

	
	ClientError – If none of the connection types offered by the server are supported

	ClientInvalidOperation – If the client is already open, or in other words if it isn’t closed

	TransportError – If a network or transport related error occurs

	ServerError – If the handshake or the first connect request gets rejected by the server.

	AuthenticationError – If the server rejects the authentication request or if a network failure occurs during the authentication

	
coroutine close()

	Disconnect from the CometD server

	
coroutine publish(channel, data)

	Publish data to the given channel

Warning

The Streaming API is implemented on top of CometD. The publish
operation is a CometD operation. While it’s still a legal
operation, Salesforce chose not to implement the
publishing of Generic Streaming and Platform events with CometD.

You should use the REST API to generate Generic Streaming events [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/generate_event_using_rest.htm],
or use the REST or SOAP API to publish Platform events [https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/platform_events_publish_api.htm].

	Parameters

	
	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Data to send to the server

	Returns

	Publish response

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	
	ClientInvalidOperation – If the client is closed

	TransportError – If a network or transport related error occurs

	ServerError – If the publish request gets rejected by the server

	
coroutine subscribe(channel)

	Subscribe to channel

	Parameters

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel

	Raises

	
	ClientInvalidOperation – If the client is closed

	TransportError – If a network or transport related error occurs

	ServerError – If the subscribe request gets rejected by the server

	
coroutine unsubscribe(channel)

	Unsubscribe from channel

	Parameters

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the channel

	Raises

	
	ClientInvalidOperation – If the client is closed

	TransportError – If a network or transport related error occurs

	ServerError – If the unsubscribe request gets rejected by the server

	
coroutine receive()

	Wait for incoming messages from the server

	Returns

	Incoming message

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	
	ClientInvalidOperation – If the client is closed, and has no more pending incoming messages

	ServerError – If the client receives a confirmation message which is not successful

	TransportTimeoutError – If the transport can’t re-establish connection with the server in connection_timeout time.

	
closed

	Marks whether the client is open or closed

	
subscriptions

	Set of subscribed channels

	
connection_type

	The current connection type in use if the client is open,
otherwise None

	
pending_count

	The number of pending incoming messages

Once open is called the client starts listening for messages
from the server. The incoming messages are retrieved and stored in an
internal queue until they get consumed by calling receive.

	
has_pending_messages

	Marks whether the client has any pending incoming messages

Authenticators

	
class aiosfstream.auth.AuthenticatorBase(json_dumps=<function dumps>, json_loads=<function loads>)

	Abstract base class to serve as a base for implementing concrete
authenticators

	Parameters

	
	json_dumps (callable() [https://docs.python.org/3/library/functions.html#callable]) – Function for JSON serialization, the default is json.dumps() [https://docs.python.org/3/library/json.html#json.dumps]

	json_loads (callable() [https://docs.python.org/3/library/functions.html#callable]) – Function for JSON deserialization, the default is json.loads() [https://docs.python.org/3/library/json.html#json.loads]

	
class aiosfstream.PasswordAuthenticator(consumer_key, consumer_secret, username, password, json_dumps=<function dumps>, json_loads=<function loads>)

	Authenticator for using the OAuth 2.0 Username-Password Flow

	Parameters

	
	consumer_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Consumer key from the Salesforce connected app definition

	consumer_secret (str [https://docs.python.org/3/library/stdtypes.html#str]) – Consumer secret from the Salesforce connected app definition

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – Salesforce username

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – Salesforce password

	json_dumps (callable() [https://docs.python.org/3/library/functions.html#callable]) – Function for JSON serialization, the default is json.dumps() [https://docs.python.org/3/library/json.html#json.dumps]

	json_loads (callable() [https://docs.python.org/3/library/functions.html#callable]) – Function for JSON deserialization, the default is json.loads() [https://docs.python.org/3/library/json.html#json.loads]

	
client_id = None

	OAuth2 client id

	
client_secret = None

	OAuth2 client secret

	
password = None

	Salesforce password

	
username = None

	Salesforce username

	
class aiosfstream.RefreshTokenAuthenticator(consumer_key, consumer_secret, refresh_token, json_dumps=<function dumps>, json_loads=<function loads>)

	Authenticator for using the OAuth 2.0 Refresh Token Flow

	Parameters

	
	consumer_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Consumer key from the Salesforce connected app definition

	consumer_secret (str [https://docs.python.org/3/library/stdtypes.html#str]) – Consumer secret from the Salesforce connected app definition

	refresh_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – A refresh token obtained from Salesforce by using one of its authentication methods (for example with the OAuth 2.0 Web Server Authentication Flow)

	json_dumps (callable() [https://docs.python.org/3/library/functions.html#callable]) – Function for JSON serialization, the default is json.dumps() [https://docs.python.org/3/library/json.html#json.dumps]

	json_loads (callable() [https://docs.python.org/3/library/functions.html#callable]) – Function for JSON deserialization, the default is json.loads() [https://docs.python.org/3/library/json.html#json.loads]

	
client_id = None

	OAuth2 client id

	
client_secret = None

	OAuth2 client secret

	
refresh_token = None

	Salesforce refresh token

Replay

	
class aiosfstream.ReplayOption

	Replay options supported by Salesforce

	
ALL_EVENTS = -2

	Receive all events, including past events that are within the 24-hour
retention window and new events sent after subscription

	
NEW_EVENTS = -1

	Receive new events that are broadcast after the client subscribes

	
class aiosfstream.ReplayMarker(date, replay_id)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Class for storing a message replay id and its creation date

	Parameters

	
	date (str [https://docs.python.org/3/library/stdtypes.html#str]) – Creation date of a message, as a ISO 8601 formatted datetime string

	replay_id (int [https://docs.python.org/3/library/functions.html#int]) – Replay id of a message

	
date

	Alias for field number 0

	
replay_id

	Alias for field number 1

	
class aiosfstream.ReplayMarkerStorage

	Abstract base class for replay marker storage implementations

	
coroutine get_replay_marker(subscription)

	Retrieve a stored replay marker for the given subscription

	Parameters

	subscription (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the subscribed channel

	Returns

	A replay marker or None if there is nothing stored for the given subscription

	Return type

	ReplayMarker or None [https://docs.python.org/3/library/constants.html#None]

	
coroutine set_replay_marker(subscription, replay_marker)

	Store the replay_marker for the given subscription

	Parameters

	
	subscription (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the subscribed channel

	replay_marker (ReplayMarker) – A replay marker

	
class aiosfstream.MappingStorage(mapping)

	Mapping based replay marker storage

	Parameters

	mapping (collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]) – A MutableMapping object for storing replay markers

	
class aiosfstream.DefaultMappingStorage(mapping, default_id)

	Mapping based replay marker storage which will return a defualt
replay id if there is not replay marker for the given subscription

	Parameters

	
	mapping (collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]) – A MutableMapping object for storing replay markers

	default_id (int [https://docs.python.org/3/library/functions.html#int]) – A replay id

	
class aiosfstream.ConstantReplayId(default_id, **kwargs)

	A replay marker storage which will return a constant replay id for
every subscription

Note

This implementations doesn’t actually stores anything for later
retrieval.

	Parameters

	default_id (int [https://docs.python.org/3/library/functions.html#int]) – A replay id

Exceptions

Exception types

Exception hierarchy:

AiosfstreamException
 AuthenticationError
 ClientError
 ClientInvalidOperation
 TransportError
 TransportInvalidOperation
 TransportTimeoutError
 TransportConnectionClosed
 ServerError

	
exception aiosfstream.exceptions.AiosfstreamException

	Base exception type.

All exceptions of the package inherit from this class.

	
exception aiosfstream.exceptions.AuthenticationError

	Authentication failure

	
exception aiosfstream.exceptions.ClientError

	Client side error

	
exception aiosfstream.exceptions.ClientInvalidOperation

	The requested operation can’t be executed on the current state of the
client

	
exception aiosfstream.exceptions.TransportError

	Error during the transportation of messages

	
exception aiosfstream.exceptions.TransportInvalidOperation

	The requested operation can’t be executed on the current state of the
transport

	
exception aiosfstream.exceptions.TransportTimeoutError

	Transport timeout

	
exception aiosfstream.exceptions.TransportConnectionClosed

	The connection unexpectedly closed

	
exception aiosfstream.exceptions.ServerError

	Streaming API server side error

If the response contains an error field it gets parsed
according to the specs [https://docs.cometd.org/current/reference/#_code_error_code]

	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Error description

	response (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Server response message

	
message

	Error description

	
response

	Server response message

	
error

	Error field in the response

	
error_code

	Error code part of the error code part of the error [https://docs.cometd.org/current/reference/#_code_error_code], message field

	
error_args

	Arguments part of the error [https://docs.cometd.org/current/reference/#_code_error_code], message field

	
error_message

	Description part of the error [https://docs.cometd.org/current/reference/#_code_error_code], message field

Changelog

0.2.3 (2018-09-19)

	Fix asynchronous iterator bug in python 3.7

0.2.2 (2018-06-15)

	Update aiocometd dependency to 0.3.1

0.2.1 (2018-05-25)

	Fix replay issues on mass record delete operations

	Improve the documentation of the Client.publish method

0.2.0 (2018-05-05)

	Enable the usage of third party JSON libraries

	Expose authentication results as public attributes in Authenticator classes

0.1.0 (2018-04-26)

	
	Supported authentication types:

	
	using a username and password

	using a refresh token

	
	Subscribe to and receive messages on:

	
	PushTopics [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/working_with_pushtopics.htm]

	Generic Streaming Channels [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/generic_streaming_intro.htm#generic_streaming_intro]

	Support for durable messages and replay of events [https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/using_streaming_api_durability.htm]

	Automatic recovery from replay errors

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aiosfstream	

 	
 	
 aiosfstream.exceptions	

Index

 A
 | C
 | D
 | E
 | G
 | H
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	aiosfstream.exceptions (module)

 	AiosfstreamException

 	
 	ALL_EVENTS (aiosfstream.ReplayOption attribute)

 	AuthenticationError

 	AuthenticatorBase (class in aiosfstream.auth)

C

 	
 	Client (class in aiosfstream)

 	client_id (aiosfstream.PasswordAuthenticator attribute)

 	(aiosfstream.RefreshTokenAuthenticator attribute)

 	client_secret (aiosfstream.PasswordAuthenticator attribute)

 	(aiosfstream.RefreshTokenAuthenticator attribute)

 	
 	ClientError

 	ClientInvalidOperation

 	close() (aiosfstream.Client method)

 	closed (aiosfstream.Client attribute)

 	connection_type (aiosfstream.Client attribute)

 	ConstantReplayId (class in aiosfstream)

D

 	
 	date (aiosfstream.ReplayMarker attribute)

 	
 	DefaultMappingStorage (class in aiosfstream)

E

 	
 	error (aiosfstream.exceptions.ServerError attribute)

 	error_args (aiosfstream.exceptions.ServerError attribute)

 	
 	error_code (aiosfstream.exceptions.ServerError attribute)

 	error_message (aiosfstream.exceptions.ServerError attribute)

G

 	
 	get_replay_marker() (aiosfstream.ReplayMarkerStorage method)

H

 	
 	has_pending_messages (aiosfstream.Client attribute)

M

 	
 	MappingStorage (class in aiosfstream)

 	
 	message (aiosfstream.exceptions.ServerError attribute)

N

 	
 	NEW_EVENTS (aiosfstream.ReplayOption attribute)

O

 	
 	open() (aiosfstream.Client method)

P

 	
 	password (aiosfstream.PasswordAuthenticator attribute)

 	PasswordAuthenticator (class in aiosfstream)

 	
 	pending_count (aiosfstream.Client attribute)

 	publish() (aiosfstream.Client method)

R

 	
 	receive() (aiosfstream.Client method)

 	refresh_token (aiosfstream.RefreshTokenAuthenticator attribute)

 	RefreshTokenAuthenticator (class in aiosfstream)

 	replay_id (aiosfstream.ReplayMarker attribute)

 	
 	ReplayMarker (class in aiosfstream)

 	ReplayMarkerStorage (class in aiosfstream)

 	ReplayOption (class in aiosfstream)

 	response (aiosfstream.exceptions.ServerError attribute)

S

 	
 	SalesforceStreamingClient (class in aiosfstream)

 	ServerError

 	
 	set_replay_marker() (aiosfstream.ReplayMarkerStorage method)

 	subscribe() (aiosfstream.Client method)

 	subscriptions (aiosfstream.Client attribute)

T

 	
 	TransportConnectionClosed

 	TransportError

 	
 	TransportInvalidOperation

 	TransportTimeoutError

U

 	
 	unsubscribe() (aiosfstream.Client method)

 	
 	username (aiosfstream.PasswordAuthenticator attribute)

 _static/up.png

_static/ajax-loader.gif

_images/replay.png
Deleted Events

Accessible Events Within
Outside Retention oW
‘Window Retention Window
| |
i 1M 1
\.: a id ».‘ play A' ! -«“u«- l play ,!.- l

Replay Option: 2

1 N
Oldest lewest
Events t t t Events
Read all retained

Read events6, 7,
and new events

Read new events.
8, and newer

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 aiosfstream

 		
 User’s guide

 		
 Installation

 		
 Install extras

 		
 Quickstart

 		
 Authentication

 		
 Connecting

 		
 Channels

 		
 Subscriptions

 		
 Receiving messages

 		
 Replay of events

 		
 Advanced Usage

 		
 Replay configuration

 		
 Network failures

 		
 Prefetching

 		
 JSON encoder/decoder

 		
 API Reference

 		
 Client

 		
 Authenticators

 		
 Replay

 		
 Exceptions

 		
 Changelog

 		
 0.2.3 (2018-09-19)

 		
 0.2.2 (2018-06-15)

 		
 0.2.1 (2018-05-25)

 		
 0.2.0 (2018-05-05)

 		
 0.1.0 (2018-04-26)

_static/file.png

_static/down-pressed.png

_static/down.png

_static/replay.png
Deleted Events

Accessible Events Within
Outside Retention oW
‘Window Retention Window
| |
i 1M 1
\.: a id ».‘ play A' ! -«“u«- l play ,!.- l

Replay Option: 2

1 N
Oldest lewest
Events t t t Events
Read all retained

Read events6, 7,
and new events

Read new events.
8, and newer

_static/minus.png

_static/plus.png

_static/up-pressed.png

